AUTOMATIC DIALECT RECOGNITION IN ARABIC BROADCAST MEDIA

BILLAL BELAININE AND FATIHA SADAT BELAININE.BILLAL@COURRIER.UQAM.CA, SADAT.FATIHA @UQAM.CA **UQAM** Université du Québec à Montréal

INTRODUCTION

- □ This work deals with DID using supervised learning methods that emphasize only on labelled data, to discriminate between four major Arabic dialects: Egyptian, Levantine, North African, Gulf and Modern Standard Arabic (MSA) [1].
- □ Dialect varieties of Arabic: The dialectal Arabic is gregated into five regional language:
 - Egyptian (EGY): dialects of nile valley and Sudan.
 - North African or Maghrebi (NOR): dialects of Morocco, Algeria, Tunisia and Mauritania and Libya.
 - Gulf or Arabian Peninsula (GLF): dialects of Kuwait, Saudi Arabia, Bahrain, Qatar, United Arab Emirates and Oman
 - Levantine (LAV): dialects of Lebanon, Syria, Jordan, Palestine and Israel.
 - Iraqi (IRQ): dialects of Iraq.

□ Our team at UQAM is interested in research on Arabic dialect systems in the context of NLP and NLU. [2] [3]

METHODOLOGY

- □ Our proposed approach for Arabic DID focuses on :
 - 1. Concatenation of i-vector audio repre-

CLASSIFICATION

□ Logistic Classifier for Arabic DID:

Corpus iVector &

EXPERIMENTATIONS

- □ We propo d the NER s
 - 1. Resu

- sentation vectors with bi-gram characterbased vectors.
- 2. A transformation of the bi-gram character model by LDA.

- □ The corpus contains two forms of data: [6]
 - 1. Transcription Buckwalter.
 - 2. I-Vector audio representation.

Labeled Corpus(Dialect)	Number of instances
GLF	2744
LAV	2979
NOR	2954
EGY	3115
MSA	2207
Total	13999
Unlabeled Corpus(Test)	Number of instances
All dialects	1492

□ I-vector is the matrix model of the total variability of a statistics set for each audio track

oroposed a set of features which improved NER system performance									
Results using cross-validation and the multi-layer perceptron classifiers.									
Dialect	Precision	Recall	F-Measure						
GLF	0,841	0,840	0,841						
LAV	0,771	0,772	0,772						
NOR	0,895	0,900	0,897						
EGY	0,840	0,857	0,848						
MSA	0,849	0,821	0,835						
Avg.	0,840	0,840	0,840]					
Results using cross-validation and									
the	voting	ens	emble	classif	iers.				

	2.	Results	using	g cro	oss-valida	ition and			
		the	voting	ense	emble	classifiers.			
		Dialect	Precision	Recall	F-Measure				
		GLF	0,819	0,863	0,840	Ĩ			
		LAV	0,768	0,741	0,754				
		NOR	0,893	0,894	0,893]			
		EGY	0,843	0,856	0,849]			
		MSA	0,849	0,808	0,828]			
		Avg.	0,834	0,834	0,834				
	3.	Results	u	sing	cross	s-validation			
	and		the	logistic		classifiers.			
		Dialect	Precision	Recall	F-Measure]			
		GLF	0,820	0,818	0,819]			
		LAV	0,737	0,716	0,726				
		NOR	0,878	0,885	0,881				
		EGY	0,812	0,821	0,816]			
		MSA	0,790	0,803	0,797				
		Avg.	0,809	0,810	0,810				
□ Results on ASRU/MGB test file									
	Cla	ssification	algorithm	s Acc	uracy(%)				
	Voting Ensemble			56.1	0				
	Logistic			54.5	6				
	Multi-layer perceptron			53.6)				
	Base	ed on th	nese res	ults, v	ve could	notice the			
1	following conclusions:								

- 1. Combining different classification algorithms (Voting ensemble), gives the best results in term of accuracy.
- 2. The F-measures for the three algorithms

[5]. □ Latent Dirichlet Allocation (LDA) for dimensionality reduction[4]. $p(\theta, z, bigram | \alpha, \beta) = p(\theta | \alpha) \prod_{n=1}^{N} p(z_n | \theta) p(bigram_n | z_n, \beta) (1)$

and for each Arabic dialect are located between 72 % and 89%. The average Fmeasure on the five dialects is located between 81% and 84%, which is very promising.

REFERENCES

- [1] Sadat, F., Kazemi, F. et Farzindar, A. (2014) Automatic identification of arabic dialects in social media. In ACM (pp. 35-40). .
- [2] Sadat, F. (2013). Arabic social media analysis for the construction and the enrichment of nlp tools. In Corpus Linguistics.p22-26.
- [3] Sadat, F., Kazemi, F. et Farzindar, A. (2014). Automatic identification of arabic language varieties and dialects in social media. In Proceedings of SocialNLP.
- [4] BLEI, David M., NG, Andrew Y., et JORDAN, Michael I. (2003). Latent dirichlet allocation. In Journal of machine Learning research, p.993-1022.
- [5] Dehak, N., Dehak, R., Kenny, P., Brümmer, N., Ouellet, P., Dumouchel, P. (2009) Support vector machines versus fast scoring in the low-dimensional total variability space for speaker verification. In Tenth Annual conference of the international speech communication association,p217-250.
- [6] Bontcheva, K., Derczynski, L., Funk, A., Greenwood, M. A., Maynard, D. et Aswani, N. (2013). Twitie : An open-source information extraction pipeline for microblog text. In RANLP, p83-90.

CONCLUSION AND PERSPECTIVES

□ **Proposed a set of features which improved the DID system performance** The best results were obtained during this shared task on closed submission using the Voting Ensemble with an overall accuracy of 56.10, followed by the simple logistic and Multi-Layer perceptron with an overall accuracy of 54.56 and 53.55, respectively.

□ Future research include:

- Adding more domain-specific features
- Exploring semi-supervised learning algorithms using more unlabelled data.
- Studying a hybrid model for dialect identification with the involvment of character-based and word-based models.